<u>30th April 2021. Vol.99. No 8</u> © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

HYBRID APPROACH CRITIC-TOPSIS FOR CLOUD SERVICE SELECTION

¹SALY EID HELMY, ²GAMAL H.ELADL, ³MOHAMED EISA

¹Department of information system, Faculty of computers and information, Mansoura university, Egypt

²Associate professor of information systems ,Faculty of computers and information,Mansoura university,@Egypt,https://scholar.google.com.eg/citations?user=EZpddggAAAAJ&hl=ar)

³Professor of information technology, Faculty of management technology, Port Said university, Egypt

E-mail: ¹salyhelmy18@yahoo.com,²gamalhelmy@mans.edu.eg, ³mmmeisa@yahoo.com

ABSTRACT

Recently, Cloud computing is an ideal solution to complete business processes of most enterprises. The number of cloud services providers has increased, and consequently the number of cloud services and offerings has increased. The said issue is how choosing the best suitable cloud service adequate to business requirements. The aim of this paper is to provide a novel MCDM approach that gives accurate and reliable results for cloud service selection based problem. This paper proposes a hybrid MCDM (CRITIC-TOPSIS) approach to select best cloud service. CRITIC method used for determining weights of criteria objectively, furthermore, TOPSIS method used for ranking six virtual dedicated servers (VDS silver, VDS Gold, Cloud4You, SMART8, SMART16, QUAD SMART) based on 4 criteria (Dedicated CPU cores, Dedicated RAM, Storage HDD, Price/month). To approve the validity and robustness of the proposed hybrid approach, sensitivity analysis was conducted through sum experiments as different scenarios. Proposal's result was compared to another hybrid approach result, which used Entropy weighting method to determine the weights of criteria and TOPSIS to rank alternatives. More MCDM methods were applied (Classical TOPSIS, PROMETHEE-||, weighted sum product, weighted sum model), then this experimental results compared with the two hybrids and approved validity of CRITIC-TOPSIS approach.

Key words: MCDM, Cloud Computing, CRITIC, TOPSIS, Entropy, PROMETHEE-//, Weighted Sum Product, Weighted Sum Model.

1. INTRODUCTION

Cloud computing (CC) has become increasingly popular due to its introducing cost effective resources as a services (e.g., networks, servers, storage, applications, and services) over the network [12]. CC is a powerful invention which helps enterprises to achieve a competitive advantage. When an enterprise wants to adopt cloud services, this means that it faces a real challenge. The said issue is how to identify the best cloud service among set of feasible services. Therefore, enterprises restore to solving their matter through decision making methods. The selection process determined based on number of criteria which make it a multi criteria decision making (MCDM) problem. There are many attempts by researchers and scientists to help enterprises select cloud services. Some researches like [13], [14] used qualitative criteria, so they integrate analytic hierarchy

process (AHP) with TOPSIS to convert criteria relative importance to numerical values and assign weights to criteria subjectively but paper [24] used cloud services selection problem based on quantitative criteria and also used AHP to assigning weights. Assigning weights subjectively which be influenced by decision makers' preferences leads to time consuming, and a lot of inconsistency especially when there is no agreement between decision makers. And when these preferences based on wrong information, this can cause results inaccuracy. So we prefer to assigning weights to criteria objectively. With the Objective weighting methods especially quantitative criteria in which criteria weights are derived from information gathered in each criterion through mathematical models without any consideration of decision makers' opinions. Objective weighting methods includes entropy; mean weight, standard deviation, and criteria importance through inter

30th April 2021. Vol.99. No 8 © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

criteria (CRITIC) [4]. Many of existing researches of cloud services selection based problem e.g. [25], [26], [27] used Entropy-TOPSIS approach. Practically, there was found some lack of reliability in its results. This paper aim to develop a novel hybrid approach which uses CRITIC method for assigning weights to criteria objectively and TOPSIS method for ranking alternatives. Then we applied other MCDM methods (classical TOPSIS, weighted sum product (WSP), weighted product model (WPM), and PROMETHEE-||. and these experimental results compared with the two hybrids results to prove accuracy and reliability of our proposal result. The robustness of

2. RELATED WORK

The problem of selecting a cloud service has attracted the attention of many researchers and scientists for helping enterprises to identifying best suitable service. Researchers contributed to introduce many integration of MCDM methods. In this section we will mention many of contributions in this field.

Table .A. Related work					
Reference	Date	Contribution			
[22]	2016	Proposed empirical study which integrated CRITIC and Entropy weighting to assigning weights to quantitative criteria and TOPSIS method for ranking alternatives. In context of the evaluation of regional disparities and determination of weights of regional indicators and regional disparities assessment.			
[20]	2017	In this paper, The TOPSIS method expanded by using the Minkowski Distance to rate and classifies Cloud Service Providers (CSPs) then compared E-TOPSIS results with classical TOPSIS result.			
[13]	2017	Proposed approach which integrated AHP and TOPSIS. Used AHP method to assigning weights to qualitative criteria and TOPSIS method for ranking			

proposed approach was approved by applying sensitivity analysis through six experiments of interchanging criteria as different scenarios. The rest of this paper is organized as follow: Section 2 consists of related work of cloud services selection based problem with MCDM methods. Section 3 presents the proposed methodology to help enterprises choose the best suitable cloud service to achieve its goals. In section 4, a discussion of results of the hybrid approach. Section 5 validates results of the hybrid approach by comparing the hybrid approach results with the results of other five MCDM methods by using sensitivity analysis. Section 6 contains conclusion, limitation and future work.

_		
		alternative of a set of cloud
		service providers.
[14]	2017	Introduced an Analytical
		Hierarchy (AHP) process
		combined with Fuzzy-
		TOPSIS for selecting cloud
		services and validating
		results in comparison to
		another method, and agreed
		on its robustness with
		sensitivity analysis.
[26]	2017	Proposed an Extended
		TOPSIS (E-TOPSIS)
		approach by varying the
		parameter p in the
		Minkowski distance.
		Presented in a case study
		for CSPs evaluation An
		analysis of E-TOPSIS
		solutions and the CSPs
		order change relative to
		parameter p variation is
		realized A comparison of
		the E TOPSIS solutions
		with TOPSIS solution is
		presented
[24]	2018	Introduced hybrid multi
[24]	2010	aritoria desision making
		criteria decision-making
		model to select best cloud
		services. The proposed
		methodology assigns
		various ranks to cloud
		services based on the
		quantified quality-of-
		service parameters using a
		novel extended Grey
		Technique for Order of
		Preference by Similarity to
		Ideal Solution integrated
		with analytical hierarchical

30th April 2021. Vol.99. No 8 © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

		process.
[25]	2018	Applied Entropy Weight method and TOPSIS power and SLA method to find the physical machine. That optimize energy consumption, number of VM migration and SLA violation.
[18]	2019	This paper determines a hybrid renewable energy source (HRESs) for a rural community using technical, economic, and techno- economic criteria, which combines the importance of criteria by linking the criteria (CRITIC) and (TOPSIS) as a solution method.
[19]	2019	Designed an improved Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) method based selection technique for choosing trustworthy Cloud Database Servers

3. RESEARCH METHODOLOGY

In this paper, CRITIC weighting method was merged with TOPSIS method to select best virtual dedicated server as a cloud infrastructure as a service type. CRITIC method used to assign weights to criteria objectively. Then we used TOPSIS method for ranking alternatives as shown in figure 1

Detailed steps of research methodology:

3.1. Construct Decision Matrix and Data Description:

This research concentrates on infrastructure as a service (IaaS) of cloud computing. Decision matrix has real data which gathered from real offers of three cloud companies (Server4You), (Cloud4You), (Cherry servers).Decision matrix has a set of six virtual dedicated servers and four criteria. The six servers are VDS silver (A1), VDS Gold (A2), Cloud 4 you (A3), SMART8 (A4), SMART16 (A5), and QUAD SMART (A6). The four criteria are Dedicated CPU cores (C1), Dedicated RAM (GB) (C2), Storage HDD (TB) (C3), and Price/month (\$) (C4), as in table 1.

TT		
		(CDSs). The selection
		technique utilizes multi
		attribute decision making
		approach for selecting
		trustworthy CDSs.
[27]	2020	Proposed Heterogeneous
		QoS-Based Cloud Service
		Selection Approach Using
		Entropy Weight and GRA-
		ELECTRE III
[16]	2020	Developed a framework for
		selecting cloud services for
		a neutrosophic environment
		using single-value
		neutrosophic group theory
		(SVNS) and (TOPSIS) for
		ranking alternatives of
		cloud services providers.
[12]	2020	Here, paper focused on
		cloud services security
		evaluation based problems.
		Integrated subjective
		weights (fuzzy
		DEMATEL) with objective
		weights (Entropy method)
		then TOPSIS to rank
		alternatives.

3.2. CRITTIC Method for Criteria Weight Determination:

The criteria importance through inter-criteria correlation (CRITIC) method is based on the standard deviation. It uses correlation analysis to measure contrasts between criteria [4], [22].

3.2.1. Normalize the decision matrix as in table 2.

 $r_{ij} = \frac{x_{ij} - Xj^{worst}}{Xj^{best} - Xj^{worst}}$ Where r_{ij} is the data of the i-th evaluating alternative on the

(1)

3.2.2. Calculate standard deviation σj for each criterion which quantifies the contrast intensity of the corresponding criterion, see table3.

criterion

- 3.2.3. Determine the symmetric matrix (S) of n*n with element r_{ik} as a generic element, which is the linear correlation coefficient between the vectors x_i and x_k , as in table 4.
- 3.2.4. Calculate measure of the conflict created by criterion j with respect to the decision situation defined by the rest of criteria $\sum_{k=1}^{m} (1 r_{ik})$, as in table 5.

<u>30^m Api</u>	nl 2021.	. Vol.99.	No 8
© 2021	Little L	ion Scie	ntific

	C	2021 Little L	ion Scientific		JATIT
ISSN: 1992-8645		www.jatit.org		E-ISSN: 1817-3195	
3.2.5.	Determining the quantity of information in relation to each crit	the the terion,	3.3.2.	Calculate weighted normalize matrix $Vj = w_j * x_{ij}$	zed (5)
	see table 5. $c_i = \sigma j^* \sum_{k=1}^m (1 - r_{ik})$	(2)	3.3.3.	Identifying ideal (best and w Vj^+ : indicates the ideal(best)	vorst) value) value
3.2.6.	Determining the objective w result by normalizing these valuunity according to the following to the followin	eights les to owing	3.3.4.	Vj^- : indicates the ideal(wors Calculate Euclidean distance best and worst	st) value e from ideal

(3)

dedicated

equation, see table 5.

shown in figure 2.

Alternatives

CRITIC method Results:

the highest weight and the

TOPSIS Method for Ranking

TOPSIS method is based on the determination of the best alternative nearest to the ideal solution

(with the shortest Euclidean distance) and

farthest from the negative ideal solution [22], [6],

Normalize decision matrix $r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{j}^{n} x_{ij}}} (4)$

The criterion dedicated RAM (C2) has

CPU cores criterion (C1) has a lower

weight. The storage HDD criterion (C3) was ranked second in importance and

the price criterion (C4) was the third, as

с_j $W_j = \frac{c_j}{\sum_{k=1}^m c_j}$

3.2.7.

3.3.

[7], see table 6:

3.3.1.

$$S_{I}^{+} = \left[\sum_{j=1}^{m} (Vj - Vj^{+})^{2}\right]^{0.5}$$
(6)

$$S_{i}^{-} = \left[\sum_{j=1}^{m} (Vj - Vj^{-})^{2}\right]^{0.5}$$
(7)

3.3.5. Calculate performance score (the relative closeness from the ideal solution). The relative closeness of the i-th alternative Ai is expressed as:

$$p_i = \frac{S_i}{S_l^+ + S_i^-} \tag{8}$$

3.3.6. Ranking the alternatives in descending order, see figure 3.

4. CRITIC-TOPSIS Results:

QUAD SMART (A6) was ranked the best server, and Cloud4You (A3) server was ranked the worst. The second is SMART16, the third is VDS Gold, the fourth is SMART78 and the fifth is VDS silver, as shown in figure 3.

Criteria weights Multi criteria **Decision making** CRITIC-TOPSIS Group of TOPSIS approach is an Ideal solution for decision makers method Best cloud service selection Inconsistency and subjectivity

Figure (1) Research Methodology

Journal of Theoretical and Applied Information Technology <u>30th April 2021. Vol.99. No 8</u> © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

dIndex	Cloud company	Server name	Dedicated	Dedicated	Storage	Price/month
			CPU	RAM	HDD(TB)	(\$)
			cores(C1)	(GB) (C2)	(C3)	(C4)
A1	Server4You[1]	VDS silver	2	8	0.5	19.99
A2		VDS Gold	2	16	1	29.99
A3	Cloud4You[2]	-	3	16	1	145.22
A4	Cherry servers[3]	SMART8	2	8	2	55
A5		SMART16	2	16	2	61
A6		QUAD	4	16	3	69
		SMART				
Best			4	16	3	19.99
worst			2	8	0.5	145.22
	$Xj^{best} - Xj^{worst}$		2	8	2.5	125.23

Table 2: Normalized Decision Matrix (r_{ij})

Criteria	Dedicated CPU	Dedicated RAM	Storage HDD(TB)	Price/month(\$)
Index	cores	(GB)		
1	0	0	0	0
2	0	1	0.2	0.079853
3	0.5	1	0.2	1
4	0	0	0.6	0.2796
5	0	1	0.6	0.3275
6	1	1	1	0.3914

Table 3: Standard Deviation of Criteria

Criteria	C1	C2	C3	C4
σj	0.41833	0.516398	0.36697	0.353575

Table 4:.symmetric matrix $S(r_{ik})$

Criteria	C1	C2	C3	C4
C1	1	0.46291	0.586264	0.50275
C2	0.46291	1	0.281439	0.452593
C3	0.586264	0.281439	1	0.109457
C4	0.50275	0.452593	0.109457	1

Table 5: CRITIC Method Results for Weight Determination

		(1 –	r _{ik})				
	C1	C2	C3)	C4	$\sum_{m=1}^{m}$	Cj	Wj
Criteria					$\sum_{k=1}^{k=1} (1 - r_{ik})$		
C1		0.53709	0.413736	0.49725		0.60577	0.20441
	0				1.448076		
C2	0.53709		0.718561	0.547407		0.931096	0.314196
		0			1.803058		
C3	0.413736	0.718561		0.890543		0.74232	0.25045
			0		2.02284		
C4	0.49725	0.547407	0.890543			0.68424	0.23089
				0	1.9352		

Figure 2: Objective Weights of Criteria

pu	ex	Nori	malized	decision n	natrix								
W	, j	0.20 441	0.31 4196	0.2504	0.230 89	Weighted normalized decision matrix(<i>Vj</i>)(3.3.2)							
servers	criteria	C1	C2	C3	C4	C1	C2	C3	C4	<i>Si</i> ⁺ (3.3.4)	<i>Si</i> ⁻ (3.3.4)	p_i (3.3.5)	Rank
A	1	0.31 2348	0.23 5702	0.1139 606	0.108 5790	0.063 8471	0.074 0566	0.0285 414	0.0250 6981	0.1729 9199	0.1570 54861	0.4758 56	5
A.	2	0.31 2348	0.47 1405	0.2279 21	0.162 8957	0.063 8471	0.148 1136	0.0570 828	0.0376 10988	0.1314 0608	0.1648 72378	0.5564 77778	3
A.	3	0.46 8522	0.47 1405	0.2279 21	0.788 7867	0.095 771	0.148 1136	0.0570 828	0.1821 22961	0.1967 70475	0.0855 46408	0.3030 1556	6
A	4	0.31 2348	0.23 5702	0.4558 43	0.298 742	0.063 8471	0.074 0566	0.1141 65879	0.0689 7654	0.1214 37673	0.1418 93143	0.5388 398	4
A	5	0.31 2348	0.47 1405	0.4558 43	0.331 332	0.063 8471	0.148 1136	0.1141 65879	0.0765 0125	0.0999 003	0.1548 28718	0.6078 17406	2
A	6	0.62 4695	0.47 1405	0.6837 64	0.374 785	0.127 6939	0.148 1136	0.1711 24869	0.0865 3411	0.0614 643	0.1976 4478	0.7627 86008	1
<i>Vj</i> ⁺ (3.3.3)				0.127 6939	0.148 1136	0.1711 24869	0.0250 6981				-		
Vj ⁻ (3.3.3)				0.063 8471	0.074 0566	0.0285 414	0.1821 22961						

Figure 3: Ranking Virtual Servers by CRITIC-TOPSIS

5. VALIDATION OF RESULTS

Our proposal validated by using a comparison between its results and results of another hybrid approach Entropy-TOPSIS and other four MCDM methods: (Classical TOPSIS, PROMETHEE-||, weighted sum product, weighted sum model) as in section 5.1, and sensitivity analysis as in section 5.2.

5.1. Comparing CRITIC-TOPSIS Result with Results of MCDM Methods:

Five MCDM methods conducted on the same decision matrix in table.1 to validate and confirm the preference of the hybrid approach, Entropy-TOPSIS, classical TOPSIS, Weighted sum product, weighted product model, PROMETHEE-||, were applied. And a comparison of results introduces.

5.1.1. Classical TOPSIS method Classical TOPSIS steps are explained before in section 3.3, and see classical TOPSIS calculations and results in table 7, and 8.

5.1.2.1. Normalization:

Linear normalization for beneficial criteria:

$$x_{ij} \sim = \frac{x_{ij}}{x_{ij}^{max}}$$
(9)

Linear normalization for non-beneficial criteria: $x_{ij} \sim = 1 - \frac{x_{ij}}{x_{ij}max}$ (10)

5.1.2.2. Weighted normalized decision
matrix =
$$\sum_{i=1}^{n} w_i x_{ii} \sim$$
 (11)

- 5.1.3. Weighted Product Model [10], see table 10:
- 5.1.3.1. Normalization done with help of previous equation (9), (10).

5.1.3.2. Weighted normalized decision
matrix Ai=
$$\prod_{x_{ij}} w_j$$
 (12)

5.1.4. PROMETHEE-|| [8]:

The PROMETHEE is an outranking method for ranking a finite set of alternative actions when multiple criteria, which are often conflicting, and multiple decision-makers are involved [9].

5.1.4.1. Normalize the decision matrix, see table 11.

Beneficial criteria

1

$$\hat{c}_{ij} = \frac{[x_{ij} - \min(x_{ij})]}{[\max(x_{ij}) - \min(x_{ij})]}$$
(13)

Non beneficial criteria

$$r_{ij} = \frac{[\max(x_{ij}) - x_{ij}]}{[\max(x_{ij}) - \min(x_{ij})]}$$
(14)

5.1.4.2. Calculate the evaluative differences of
$$i^{th}$$
 alternative with respect to other alternatives

5.1.4.3. Calculate the preference function $p_j(a, b)$, see table 12.

$$\begin{array}{ll} p_{j}(\mathbf{a}, \mathbf{b}) = 0 & \text{if } r_{aj} <= r_{bj} \\ D(m_{a} - m_{b}) <= 0 & (15) \\ p_{j}(\mathbf{a}, \mathbf{b}) = (r_{aj} - r_{bj}) & \text{if } r_{aj} > r_{bj} \\ D(m_{a} - m_{b}) > 0 & (16) \end{array}$$

$$\Pi(a,b) = \left[\sum w_j p_j(a,b)\right] / \sum_{j=1}^n w_j$$
(17)
5.1.4.5. Determine the leaving and the

- entering outranking flows, see table 13: a. Leaving(positive) flow for *ath*
 - alternative, $\mathfrak{r}^{+} = \frac{1}{m-1} \sum_{a=1}^{m} \prod(a,b) \quad (a!=b) \quad (18)$
- b. Entering (negative) flow for a^{th} alternative, $\mathfrak{F}^{-} = \frac{1}{m-1} \sum_{b=1}^{m} \prod(b,a)$ (a!=b) (19)

<u>30th April 2021. Vol.99. No 8</u>	
© 2021 Little Lion Scientific	

	© 2021 Effice I		TITAĽ	
ISSN: 1992-864	5 <u>www.</u>	jatit.org	E-ISSN: 1817-3195	
5.1.4.6.	Calculate the out ranking flow for	5.1.5.1.	Normalize the decision matrix	

each alternative, see table 13.

$$\mathfrak{P} = \mathfrak{P}^+ - \mathfrak{P}^-$$
 (20)

Entropy Method For Weight 5.1.5. Determination:

Entropy, in information theory, is a criterion for the amount of uncertainty, represented by a discreet probability distribution [4], [6], in which broad distribution represents more uncertainty. When the difference of the value among the evaluating objects on the same indicator is high, while the entropy is small, it illustrates that this indicators provides more useful information, and the relative weight of this indicator would be higher and vice versa[22].

x_{ij}

where r_{ij} is the data of the i r_{ij} $\overline{\sum_{i=1}^m x_{ij}}$

th evaluating alternative on the criterion (21) 5.1.5.2. Compute entropy (h_i) .

In the n criteria, m evaluating alternatives evaluation problem, the entropy of j-th criterion is defined as:

$$e_{j} = -h\sum_{i=1}^{m} r_{ij} ln r_{ij}, j=1, 2, 3, ..m$$
(22)
$$h = \frac{1}{m}$$
(23)

$$\frac{1}{\ln(m)} \tag{23}$$

$$h = \frac{1}{\ln(6)} = 0.55811$$

5.1.5.3. Calculate weight vector of j-th criterion as:

$$w_j = \frac{1 - e_j}{\sum_{j=1}^n (1 - e_j)}, \ j = 1, 2, 3...$$
 (24)

		Decision 1	natrix	Normalized decision matrix				
Index	C1	C2	C3	C4	C1	C2	C3	C4
1	2	8	0.5	19.99	0.3125	0.2357	0.11396	0.10858
2	2	16	1	29.99	0.3125	0.4714	0.2279	0.16289
3	3	16	1	145.22	0.46875	0.4714	0.2279	0.78878
4	2	8	2	55	0.3125	0.2357	0.45584	0.29874
5	2	16	2	61	0.3125	0.4714	0.45584	0.33133
6	4	16	3	69	0.625	0.4714	0.68373	0.37478
$\sqrt{\sum_{j=1}^{n} x_{ij}}$	6.4	33.94	4.3875	184.106				•

Table 7:	(Classical	TOPSIS)	Normalization	Using.	Equation (4)	

Table 8: Weighted Normalized Decision Matrix and Classical TOPSIS Results Using Equation (5)

Index	Weig	hted normali	zed decision 1	natrix	Sij+	Si ⁻	Pi	Rank
1	0.07813	0.05893	0.02849	0.02715	0.172818	0.170046	0.495958	5
2	0.07813	0.11785	0.056975	0.040724	0.13883	0.169607	0.549892	3
3	0.117188	0.11785	0.056975	0.197196	0.2083975	0.076213	0.26778	6
4	0.07813	0.05893	0.11396	0.074685	0.12280312	0.14938	0.548822	4
5	0.07813	0.11785	0.11396	0.082833	0.11158	0.15445	0.580574	2
6	0.15625	0.11785	0.17094	0.093695	0.066545	0.33557	0.83451	1
Vj ⁺	0.15625	0.11785	0.17094	0.02715				
Vi^{-}	0.07813	0.05893	0.02849	0.197196				

Journal of Theoretical and Applied Information Technology <u>30th April 2021. Vol.99. No 8</u> © 2021 Little Lion Scientific

E-ISSN: 1817-3195

www.jatit.org

	Table 9: Weighted Sum Product Results										
	No	ormalized	d decision matrix Weighted normalized decision matrix								
Ind ex	C1	C2	C3	C4	C1	C2	C3	C4	Sum	Rank	
1	0.5	0.5	0.1667	0.86235	0.125	0.125	0.041675	0.507263	0.507263	6	
2	0.5	1	0.3333	0.7935	0.125	0.25	0.083325	0.198375	0.6567	3	
3	0.75	1	0.3333	0.0	0.1875	0.25	0.083325	0	0.520825	5	
4	0.5	0.5	0.6667	0.62126	0.125	0.125	0.166675	0.155315	0.57199	4	
5	0.5	1	0.6667	0.57995	0.125	0.25	0.166675	0.144987 5	0.686662	2	
6	1	1	1	0.52486	0.25	0.25	0.25	0.131215	.881215	1	

Table 10: Weighted Product Model Results

Criteria	C1	C2	C3	C4	Product	Rank
index						
1	0.840896	0.840896	0.638975	0.963653	0.4354007	5
2	0.840896	1	0.75982	0.94381	0.603028	3
3	0.9306	1	0.75982	0	0.0	6
4	0.840896	0.840896	0.90361	0.887807	0.557591	4
5	0.840896	1	0.90361	0.87267	0.663091	2
6	1	1	1	0.851159	0.851159	1

Table 11: Normalized Decision Matrix

Index	C1	C2	C3	C4
1	0	0	0	1
2	0	1	0.2	0.920147
3	0.5	1	0.2	0
4	0	0	0.6	0.72043
5	0	1	0.6	0.678523
6	1	1	1	0.608203

Table 12: Evaluation Differences of ith Alternative with Respect to Other Alternatives and The Preference of Each Alternative.

				<i>ej</i> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>					
	C1	C2	C3	C4	C1	C2	C3	C4	Sum
D(1-2)	0	-1	-0.2	0.079853	0	0	0	0.079853	0.0196325
D(1-3)	-0.5	-1	-0.2	1	0	0	0	1	0.25
D(1-4)	0	0	-0.6	0.27957	0	0	0	0.27957	0.069895
D(1-5)	0	-1	-0.6	0.321477	0	0	0	0.321477	0.08369
D(1-6)	-1	-1	-1	0.391797	0	0	0	0.391797	0.097949
D(2-1)	0	1	0.2	-0.079853	0	1	0.2	0	0.3
D(2-3)	-0.5	0	0	0.920147	0	0	0	0.920147	0.2300367
D(2-4)	0	1	-0.4	0.199717	0	1	0	0.199717	0.299929
D(2-5)	0	0	-0.4	0.241624	0	0	0	0.241624	0.060406
D(2-6)	-1	0	-0.8	0.311944	0	0	0	0.311944	0.077986
D(3-1)	0.5	1	0.2	-1	0.5	1	0.2	0	0.425
D(3-2)	0.5	0	0	-0.920147	0.5	0	0	0	0.125
D(3-4)	0.5	1	-0.4	-0.72043	0.5	1	0	0	0.375
D(3-5)	0.5	0	-0.4	-0.678523	0.5	0	0	0	0.125
D(3-6)	-0.5	0	-0.8	-0.608203	0	0	0	0	0
D(4-1)	0	0	0.6	-0.27957	0	0	0.6	0	0.15
D(4-2)	0	-1	0.4	199717	0	0	0.4	0	0.1
D(4-3)	-0.5	-1	0.4	0.72043	0	0	0.4	0.72043	0.2801075
D(4-5)	0	-1	0	0.041907	0	0	0	0.041907	0.010476
D(4-6)	-1	-1	-0.4	0.112227	0	0	0	0.112227	0.0280567

Journal of Theoretical and Applied Information Technology <u>30th April 2021. Vol.99. No 8</u> © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

D(5-1)	0	1	0.6	-0.321477	0	1	0.6	0	0.4
D(5-2)	0	0	0.4	-0.241624	0	0	0.4	0	0.1
D(5-3)	-0.5	0	0.4	0.678523	0	0	0.4	0.678523	0.26963
D(5-4)	0	1	0	-0.041907	0	1	0	0	0.25
D(5-6)	-0.5	0	-0.4	0.07032	0	0	0	0.07032	0.1758
D(6-1)	1	1	1	-0.391797	1	1	1	0	0.75
D(6-2)	1	0	0.8	-0.311944	1	0	0.8	0	0.45
D(6-3)	0.5	0	0.8	0.608203	0.5	0	0.8	0.608203	0.47705
D(6-4)	1	1	0.4	-0.112227	1	1	0.4	0	0.6
D(6-5)	1	0	0.4	0.07032	1	0	0.4	0.07032	0.36758
1			1						

Table 13: PROMETHEE-// Results

Index	1	2	3	4	5	6	s.+	ð	Rank
1	-	0.019963	0.25	0.0698925	0.0803692	0.097949	0.10363485	0.0301365	6
		25			5			15	
2	0.3	-	0.23003	0.2999292	0.060406	0.077986	0.1936716	0.0646789	3
			675	5				5	
3	0.425	0.125	-	0.375	0.125	0	0.2096	0.0517651	4
								5	
4	0.15	0.1	0.28010	-	0.0104767	0.028056	0.1137282	0.0405236	5
			75		5	75		15	
5	0.4	0.1	0.26963	0.25	-	0.01758	0.20744215	0.0786757	2
			075					5	
6	0.75	0.45	0.47705	0.6	0.36758	-	0.52892615	0.4846117	1
			075					5	
ъ_	0.405	0.158992	0.30136	0.3189643	0.1287664	0.044314			
		65	515	5		4			

	Dec	ision 1	matrix		Normalized decision matrix (5.1.5.1)			$\begin{array}{c} r_{ij} ln r_{ij} \\ (5.1.5.2) \end{array}$				
Index	C 1	C 2	C3	C4	C1	C2	C3	C4	C1	C2	C3	C4
1	2	8	0.5	19.99	0.133 33	0.1	0.0526 32	0.0525 78	- 0.2686 5	0.2302 6	- 0.1549 71	-0.15486
2	2	16	1	29.99	0.133 33	0.2	0.1052 631	0.0788 8	- 0.2686 5	0.3218 9	- 0.2369 78	-0.20034
3	3	16	1	145.2 2	0.2	0.2	0.1052 631	0.3819 6	- 0.3218 9	- 0.3218 9	-0. 236978	-0.36761
4	2	8	2	55	0.133 33	0.1	0.2105 263	0.1446 6	- 0.2686 5	0.2302 6	-0. 32803	-0.27968
5	2	16	2	61	0.133 33	0.2	0.2105 263	0.1604 4	- 0.2686 5	- 0.3218 9	- 0.3280 3	-0.29357
6	4	16	3	69	0.266 67	0.2	0.3157 895	0.1814 83	- 0.3524 7	- 0.3218 9	- 0.3640 04	-0.30971

Table 14: Entropy Method for Weight Determination

www.jatit.org

30th April 2021. Vol.99. No 8 © 2021 Little Lion Scientific

		-					-			-
$\sum_{k=1}^{m}$							-	-	-	-1.6058
$\sum x_{ij}$							1.7489	1.7480	1.0839	
i=1							6	8	8	
	1									
	5	80	9.5	380.2						
ei							0.9761	0.9756	0.6049	0.896213
,							12	2	8	
1-e _i							0.0238	0.0243	0.3950	0.103787
,							88	8	2	
Wi							0.0436	0.0445	0.7220	0.189712
,							65	6	58	

Ind ex	Norm U	using eq	uation (4	natrix)								
Wj	0.04 3665	0.04 456	0.72 2058	0.18 9712	Weigh	ted normali Using ec	zed decision quation (5)	n matrix				
crite ria	C1	C2	C3	C4	C1	C2)	C3	C4	Sij+	Si-	Pi	Ra nk
1	0.31 2348	0.23 5702	0.11 3960 6	0.10 8579 03	0.0136 387	0.0105 028	0.08228 62	0.02059 87	0.41 1791 06	0.12 9043 6	0.23 86	5
2	0.31 2348	0.47 1405	0.22 7921	0.16 2895 7	0.0136 387	0.0210 058	0.16457 22	0.03090 33	0.32 9588 6913	0.14 4845 59	0.30 53	4
3	0.46 8522	0.47 1405	0.22 7921	0.78 8786 7	0.0204 58	0.0210 058	0.16457 22	0.14964 23	0.35 3603 49	0.08 3233 4079	0.19 0537	6
4	0.31 2348	0.23 5702	0.45 5843	0.29 8742	0.0136 387	0.0105 028	0.32914 51	0.05667 49	0.16 9357 24	0.26 3784 484	0.60 9	2
5	0.31 2348	0.47 1405	0.45 5843	0.33 1332	0.0136 387	0.0210 058	0.32914 51	0.06285 76	0.17 0457 986	0.26 1902 94	0.35 76	3
6	0.62 4695 4	0.47 1405	0.68 3764	0.37 4785	0.0272 773	0.0210 058	0.49371 73	0.07110 12	0.05 0503	0.46 4168 6655	0.90 187	1
		Vj^+			0.0272 773	0.0210 058	0.49371 73	0.02059 87				
		Vj-			0.0136 387	0.0105 028	0.08228 62	0.14964 23				

Table 15: Entropy-TOPSIS Method Results

5.1.6. Experimental results:

ISSN: 1992-8645

CRITIC-TOPSIS ranked the alternatives as A6, A5, A2, A4, A1, and A3. Entropy-TOPSIS ranked alternatives as A6, A4, A5, A2, A1, and A3. When comparing the two hybrids, we found they agreed that the alternative A6 was the best and the alternative A3 was the worst. And they differed in the ranking of alternatives A4, A2, A1 as shown in figures 4, 5. To ensure the accuracy of one of the two results, we conducted a set of experiments consisting of applying other four methods of MCDM to the same research problem and comparing the results with each hybrid approach

as shown in figures 6, 7, and 8. The results found that despite the different weights in each method, the results for the weighted product model, Classical TOPSIS were completely identical to CRITIC-TOPSIS, and the weighted sum product method differed only in that A1 was the worst instead of A3 and the similarity in PROMETHEE in that the A6 is The best followed by A5, then A2, and differed in evaluating the other three alternatives. When comparing the results with Entropy-TOPSIS approach, it was found that it rarely resembles one of them, given that the weighted sum product method was only similar in that the alternative A6 was the best and differed in © 2021 Little Lion Scientific

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

evaluating of the rest of the alternatives. The weighted product model was similar in the ranking of three alternatives and differed in three. Similar Entropy-TOPSIS was mentioned with classic TOPSIS in that A6 was the best, and A3 was the worst. PROMETHEE -|| agreed that the A6 was the best and disagreed with him on the rest. In the end, the similarity of experimental results to CRITIC-TOPSIS confirmed the accuracy of its results.

			-		o. eompa	1100	n or resur	0				
ALT S/M	CRIT IC- SIS	CRIT IC-	ENT ROP Y-	ENT ROP	WSP weig hts	WSP	WP M weig	Wpm	Class ical TOP	Class	PRO MET HEE-	PRO Met
A1	0.475856	5	0.238 6	5	0.5072 63	6	0.43540 07	5	0.4959 58	5	0.03013 6515	6
A2	0.556477 778	3	0.305 3	4	0.6567	3	0.60302 8	3	0.5498 92	3	0.06467 895	3
A3	0.303015 56	6	0.190 537	6	0.5208 25	5	0.0	6	0.2677 8	6	0.05176 515	4
A4	0.538839 8	4	0.609	2	0.5719 9	4	0.55759 1	4	0.5488 22	4	0.04052 3615	5
A5	0.607817 406	2	0.357	3	0.6866 625	2	0.66309	2	0.5805 74	2	0.07867 575	2
A6	0.762786 008	1	0.901 87	1	.88121 5	1	0.85115 9	1	0.8345 1	1	0.48461 175	1

Table 16: comparison of results

Figure 4: Comparison of Alternatives Weights of Two Hybrids

Figure 5: Comparison of Alternatives Ranking of Two Hybrids

Figure 6: Comparison between CRITIC-TOPSIS Weights of Alternatives and weights by other Four MCDM Methods

Figure 7: Comparison between CRITIC-TOPSIS Ranking of Alternatives and Ranking by other Four MCDM Methods

Figure 8: Comparison between Entropy-TOPSIS Ranking of Alternatives and Ranking by other Four

MCDM Methods

5.2. Sensitivity Analysis:

Sensitivity analysis was performed on our proposed approach to verify its potency and robustness. Many experiments of interchanges between criteria have been conducted as different scenarios. For any changes in the criteria weights, if the ranking order changes, then the result is known to be sensitive; otherwise, it is robust [11]. Six experiments to do sensitivity analysis. For each experiment, we named for example (C1 ______C2) means that the weights of C1 and C2 are reciprocal. Figure (9) shows that the ranking of alternatives in each scenario, quite similar to 30th April 2021. Vol.99. No 8 © 2021 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

proposed approach ranking of alternatives. This validates its robustness and rarely is sensitive.

	Table 17. Experiments of Sensitivity Analysis									
ALTS	A1 A2		A3 A4		A5	A6				
C1 ↔ C2	0.33937	0.493691	0.260956	0.524129	0.408657	0.76694				
C1 ← C3	0.497469	0.572881	0.316561	0.514859	0.583448	0.750635				
C1 ↔ C4	0.4410456	0.52634	0.322085	0.514565	0.588601	0.755286				
C2 ← C3	0.441074	0.504485	0.2613929	0.563409	0.69374	0.7848826				
C2 ↔ C4	0.376156	0.407173	0.33567	0.43016	0.48067	0.6641889				
C3 ←→ C4	0.50963	0.58607	0.29495	0.54705	0.61232	0.74419				

Figure9: Results of Sensitivity Analysis

6. CONCLUSION

Finally, this novel hybrid approach in context of cloud services selection based problem, can be used to assist enterprises and decision makers to rank cloud services based on a number of criteria. Our proposal helps solve the challenges of inconsistency and uncertainty by integrating CRITIC the objective weighting technique to assign weights to criteria rather than conflict decision makers, the Dedicated RAM criterion has the highest weight (0.314196), Dedicated CPU cores has the least weight (0.20441), then use TOPSIS method to rank alternatives. The hybrid approach identified that the QUAD SMART server was the best (0.762786008) Cloud4You'server was the and worst (0.30301556). We applied sensitivity analysis to proposal and compared the proposal results with another hybrid MCDM approach (Entropy-TOPSIS) method then results of two hybrids compared with results of other four **MCDM** methods(Classical TOPSIS. PROMETHEE-||, weighted sum product,

weighted sum model) which validated proposal potency and robustness. And make sure that it can be adoptable in such problems.

7. LIMITATION:

The hybrid approach in this paper has not been applied to other examples of such problems.

Future work: 8.

We are looking forward to doing a lot of experiments using the proposal and other different MCDM methods on the other problems and in different fields.

REFERANCES:

- Access [1] on https://www.server4you.com/virtualdedicated-server
- [2] Access on https://www.cloud4y.com/cloudhosting/cloud server/?roistat=google9 g 102969311938 43 6567061968 virtual%20dedicated%20server &roistat referrer=&roistat pos=&gclid=EAIa IQobChMI4bbJuu3o6gIVgYxRCh1X1QxtEA AYAyAAEgJGcfD BwE.

[3] Access on https://www.cherryservers.com/virtual-servers

ISSN: 1992-8645	<u>www.jatit.org</u>	E-ISSN: 1817-3

- [4] Godwin Odu, "Weighting methods for multicriteria decision making technique," Journal of Applied Sciences and Environmental Management 23(8):1449, DOI: 10.4314/jasem.v23i8.7, 2019.
- [5] Judith Hurwitz, Alan Nugent, Fern
- Halper, Marcia Kaufman, Big Data for Dummies, April 15, 2013.
- [6]Jingwen Huang, Combining Entropy Weight and TOPSIS Method for Information System Selection, 978-1-4244-1674-5/08 /\$25.00 ©2008 IEEE.
- [7] Constanța Zoie RĂDULESCU, Iulia Cristina RĂDULESCU, An extended TOPSIS approach for ranking cloud service providers, DOI: 10.24846/v26i2y201706, July 2017.
- [8]Jagpreet Sidhu, and Sarbjeet Singh, Using the Improved PROMETHEE for Selection of Trustworthy Cloud Database Servers, The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019.
- [9]B. Roy and D. Bouyssou, "Aide Multicritère à La Décision," Méthodes Et Cas. Economica, Paris, 1993. View at: Google Scholar.
- [10] José Ramón San Cristóbal Mateo, Weighted Sum Method and Weighted Product Method, Green Energy and Technology 83:19-22DOI: 10.1007/978-1-4471-2346-0_4, anuary 2012.
- [11] Christopher Frey, H.; Patil, S.R.: Identification and review of sensitivity analysis methods. Risk Anal. 22(3), 553–578 (2002).
- [12]Sarah Maroc, Jian Biao Zhang," Towards Security Effectiveness Evaluation for Cloud Services Selection following a Risk-Driven Approach". (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 1, 2020.
- [13]Rakesh Ranjan Kumar · Siba Mishra · Chiranjeev Kumar," A Novel Framework for Cloud Service Evaluation and Selection Using Hybrid MCDM Methods". COMPUTER ENGINEERING AND COMPUTER SCIENCE, Arab J Sci Eng (2018) 43:7015– 7030, November 2017.
- [14]Rakesh Ranjan Kumar, Siba Mishra & Chiranjeev Kumar," Prioritizing the solution of cloud service selection using integrated MCDM methods under Fuzzy environment". The Journal of Supercomputing volume 73, 09 April 2017.
- [15] Falak Nawaz, Mehdi Rajabi Asadabadi, Naeem Khalid Janjua, Omar Khadeer Hussain, Elizabeth Chang, Morteza Saberi,"

journal homepage: <u>www.elsevier.com/locate/knosys</u> An MCDM method for cloud service selection using a Markov chain and the Best-worst method". DOI: 10.1016/j.knosys.2018.06.010, July 2018.

- [16] RohitKumar Tiwari, RakeshKumar," A framework for prioritizing cloud services in neutrosophic environment". https://doi.org/10.1016/j.jksuci.2020.05.009, 27 May 2020.
- [17] Aveek Basu and Sanchita Ghosh," Implementing Fuzzy TOPSIS in Cloud Type and Service Provider Selection, https://doi.org/10.1155/2018/2503895, Volume 2018.
- [18] M.O. Babatundea and D. E. Ighravwe," A CRITIC-TOPSIS framework for hybrid renewable energy systems evaluation under technoeconomic requirements". Journal of Project Management 4 (2019).
- [19] Jagpreet Sidhu1, and Sarbjeet Singh, Using the Improved PROMETHEE for Selection of Trustworthy Cloud Database Servers". The International Arab Journal of Information Technology, Vol. 16, No. 2, March 2019.
- [20]Constanța Zoie RĂDULESCU, Iulia Cristina RĂDULESCU," An Extended TOPSIS Approach for Ranking Cloud Service Providers". Studies in Informatics and Control, 26(2) 183-192, June 2017.
- [21] Babu, Jayashree ," Prioritizing Cloud Infrastructure Using MCDM Algorithms". International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8, Issue-3S, February 2019.
- [22] Eva Minarčíková, APPLICATION OF SELECTED WEIGHTING METHODS AND TOPSIS METHOD IN REGIONAL DISPARITIES ANALYSIS, the 10th International Days of Statistics and Economics, Prague, September 8-10, 2016.
- [23] ZhenyaLi,TaoYang , Ching-ShengHuang, ChongYuXu, QuanxiShao, PengfeiShi, XiaoyanWang, TongCui, An improved approach for water quality evaluation: TOPSIS-based informative weighting and ranking (TIWR) approach, Volume 89, June 2018,

https://doi.org/10.1016/j.ecolind.2018.02.014.

[24] Chandrashekar Jatoth · G. R. Gangadharan · Ugo Fiore · Rajkumar Buyya, SELCLOUD: a hybrid multi-criteria decision-making model for selection of cloud services, Springer-Verlag GmbH Germany, part of Springer Nature 2018, Published online: 9 March 2018. 30th April 2021. Vol.99. No 8 © 2021 Little Lion Scientific

© 2021 Little Lion Scientific	TITAL
www.jatit.org	E-ISSN: 1817-3195

[25]Rajeshvari Panchal, Bela Shrimali, Dr. Hiren B. Patel, ENTROPY BASED METHOD TO CALCULATE WEIGHT FOR MULTI-CRITERIAN VM ALLOCATION POLICY IN COMPUTE CLOUD, Rajeshvari Panchal et al, International Journal of Computer Science and Mobile Applications, Vol.6 Issue. 4, April- 2018, pg. 170-182.

ISSN: 1992-8645

- [26] Constanţa Zoie RĂDULESCU, Iulia Cristina RĂDULESCU, An Extended TOPSIS Approach for Ranking Cloud Service Providers, Studies in Informatics and Control, 26(2) 183-192, June 2017 ISSN: 1220-1766 eISSN: 1841-429X.
- [27] Mingming Liu, Yifan Shao, Chunxia Yu, and Jiacheng Yu2A, Heterogeneous QoS-Based Cloud Service Selection Approach Using Entropy Weight and GRA-ELECTRE III, Hindawi Mathematical Problems in Engineering Volume 2020, Article ID 1536872, 17 pages https://doi.org/10.1155/2020/1536872, 9 April 2020.